图2 NCM材料的微观结构特征。a)D-NCM、b)R-NCM和c)R-NCM-5%LTO的SEM图像。d)d-NCM和e)R-NCM-5%LTO的HRTEM和iFFT图像。f)R-NCM-5%LTO沿[100]方向的HAADF-STEM和iFFT图像。D-NCM、R-NCM和R-NCM-5%LTO样品的g)Ni 2p和h)O 1s区域的XPS光谱。i) R-NCM-5%LTO颗粒的Ni、Co、Mn、Ti和O的EDS元素图图3a显示了D-NCM、R-NCM、R-CCM5%LTO和C-NCM材料在2.74.3V电压范围内和0.1C电流密度下的首次循环充放电曲线,分别显示了93.3、163.1、183.0和174.84 mAh g−1的放电容量。可以清楚地注意到,由于Li元素的结构退化和损失,D-NCM表现出更高的极化电压和更低的放电容量。然而,R-NCM的放电容量显著提高,R-NCM-5%LTO表现出最高的放电容量(甚至高于C-NCM),这是由于适当的LTO表面涂层(导致短的Li+扩散路径、低的Li+传输电阻和高的Li+运输效率)。图3b、c显示了循环伏安法(CV)不同扫描速率下R-NCM和R-NCM-5%LTO材料的曲线。所有曲线都有一对≈3.9/3.6 V的氧化还原峰,对应于Ni2+/3+和Ni4+的氧化还原过程。氧化峰和还原峰之间的电势差代表了Li+扩散的可逆性和电化学极化程度。R-NCM-5%LTO(0.121 V)的氧化峰之间的电位偏移小于R-NCM(0.132 V),表明LTO涂层在减少电极极化和增强NCM材料的结构稳定性方面是有效的。此外,利用氧化峰电流强度(Ip)与扫描速率平方根(ν1/2)之间的线性关系(图3d)来反映Li+扩散动力学,根据R-NCM-5%LTO的拟合计算出的斜率明显更大,表明材料具有更高的Li+扩散系数;这证实了LTO表面涂层能够有效缩短Li+在大单晶中的扩散路径,并且作为快速离子导体,它能够促进Li+扩散并改善Li+扩散动力学。电化学阻抗谱(EIS)结果也证实了R-NCM-5%LTO的优越电化学性能。如图3e所示,在三种NCM材料的奈奎斯特图的高频区域观察到与欧姆电阻(Rs)和电荷转移电阻(Rct)相对应的半圆,其中R-NCM-5%LTO的奈奎斯特图显示出较低的Rs和Rct值。如图3f所示,R-NCM-5%LTO的速率性能在所有测试速率中都明显更高;特别是,在10℃下的放电容量可达90 mAh g−1(C-NCM的放电容量仅为66.49 mAh g-1)。当电流密度恢复到0.1 C时,RNCM 5%LTO的放电容量恢复到178.42 mAh g−1(C-NCM为172.68 mAh g–1)。LTO涂层有效地抑制了界面极化并优化了Li+扩散动力学。此外,图3g显示了NCM材料的循环性能(电压范围为2.7-4.3 V,电流密度为1 C。200次循环后,R-NCM-5%LTO材料的最高放电容量为125.75 mAh g−1,容量保持率为79.3%,而C-NCM的放电容量仅为113.45 mAh g–1,容量保留率为71.1%。这证明LTO涂层可以提高NCM材料的热稳定性。此后,比较R-NCM和R-NCM-5%LTO样品从第1次循环到第200次循环的微分容量dQ/dV曲线,以评估长期充放电过程中的结构退化程度(如图3h,i所示)。与R-NCM相比,R-NCM-5%LTO表现出更小的电压极化(0.017 V vs 0.068 V),并在整个循环过程中保持更高的峰值电流,表明LTO涂层有助于电化学反应的更稳定的分层结构。最后,我们定量比较了R-NCM-5%LTO与现有代表性NCM 622材料的电化学性能;结果(图3j和表S3,支持信息)表明,R-NCM-5%LTO在放电容量(1C下158.6 mAh g−1)和容量保持率(1C下100次循环后89.3%)方面具有优异的性能,与最先进的NCM材料的性能相当,因此可以直接用于高性能LIB。
图5 升级回收方法的环境和经济优势。a)火法冶金、湿法冶金、原始制造和升级回收方法的总能耗和b)温室气体排放的比较。c) 从原始材料或回收材料制造1kg正极材料的成本比较。通过火法冶金、湿法冶金和升级回收方法回收1kg废旧NCM 622电池的d)成本/收入和e)利润的比较。饼图显示了f)本研究中升级回收处理的成本百分比,以及g)使用本研究中获得的升级回收材料制造电池的成本百分比。h)不同电池回收技术的综合比较。总结与展望本文展示了一种简单而有效的升级回收策略,可以完全恢复降解的NCM 622正极材料的组成和结构,同时在其颗粒上实现多功能表面LTO涂层。升级回收过程包括水热处理和随后的温和退火,这对大规模生产既环保又经济。具有适当LTO涂层的升级循环NCM材料呈现出纯分层结构,具有薄而均匀的LTO覆盖层,从而提供了出色的电化学性能。具体来说,R-NCM-5%LTO材料在0.1℃下的初始放电容量为183.0 mAh g−1,在200次循环后仍保持79.3%的容量,甚至超过了商用材料的容量。这种升级回收策略有望实现降解正极材料的增值回收,并为LIB行业提供了一个可能的可持续和闭环方向。文献链接
L. Chen, C. X. Xing, et al. Effective Upcycling of Degraded NCM Cathode Materials Assisted by Surface Engineering for High-Performance Lithium-Ion Batteries[J]. Advanced Functional Materials,2024.
近日,河南大学李国勇团队与其合作者在生态学国际顶级期刊Global Change Biology在线发表了题为“Losses of low–germinating, slow–growing species prevent grassland composition recovery from nutrient amendmen…